MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending

- 1. For the section shown in Figure Q1, determine:
 - (a) The position of the Centroid, *C*
 - (b) 2^{nd} Moments of Area and Product Moment of Area about the *x*-*y* axes through *C*
 - (c) The Principal 2nd Moments of Area
 - (d) The directions of the Principal Axes

Fig Q1

[Ans: a) 14.7mm from bottom and left edges, b) $I_x = 131,257.96mm^4$, $I_y = 131,257.96mm^4$ & $I_{xy} = -77,234.04mm^4$, c) $I_p = 208,491.1mm^4$ & $I_Q = 54,023.92mm^4$, d) 45° anti-clockwise from x-y axes]

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending

2. Calculate (a) the Principal 2nd Moments of Area and (b) the directions of the Principal Axes for the section shown in Figure Q2.

[Ans: a) $I_p = 367,810.05 \text{ mm}^4 \& I_0 = 44,967.75 \text{ mm}^4$, b) 6.97°]

3. A box section beam, 300mm wide, 450mm deep, with a uniform wall thickness of 25mm is subjected to a uniform bending moment, *M*. The plane of bending is inclined at an angle of 30° to the longer principal axis of the section. Determine the maximum permissible bending moment if the maximum stress in the beam is not to exceed 120MPa.

[Ans: 334.54kNm]

4. A 50mm by 30mm by 5mm angle is used as a cantilever of length 500mm, with the 30mm leg horizontal and uppermost. A vertical load of 1000N is applied at the free end. Determine (a) the position of the neutral axis and (b) the maximum tensile and compressive bending stresses.

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending

5. Calculate (a) the position of the Neutral Axis and (b) the maximum tensile stress for the section shown in Figure Q5 when a Bending Moment of 225Nm is applied about the x-axis in the sense shown.

Fig Q5

[Ans: a) 42.82° (anti-clockwise) from the x-y axes, b) 14.22MPa]